APPENDIX A. 1

Pricing for Txshare Cooperative Purchase Program Participants

For Pavement Analysis and Related Services, Contractor shall quote participating SHARE Entities the rates and/or discount required for a custom implementation of the services specified by the RFP. Contractor's proposed rates for related Pavement Analysis and Related Services are found below.

Category \#	Description	Yes	No	$\begin{gathered} \text { Proposed \% } \\ \text { Discount } \\ \hline \end{gathered}$
1	Pavement Data Collection	X		0
2	Asset Inventory Management	X		0 - \%
3	Pavement Management Analysis	X		0 \qquad \%
4	Electronic Products	X		0 \%
5	Pavement Structural Evaluations	X		0 - \%
6	GIS Related Services		X	0 - \%
7	Value Added Services	X		0 _\%

If a respondent elects to submit a percentage discount off their catalog pricing for any or all of their services, the corresponding price for each numbered activity listed in Attachment A must account for the proposed discount listed in Exhibit C .
a percentage-discount, please use your established list price for each for each numbered pavement analysis and related services activity
Att .

20k	Guardrails \& Roadside Pedestrian Fence Database Development	Each	\$_1,000_						0
201	Culverts and Ditches Database Development	Each	\$_1,000						0
20 m	Cabinets Database Development	Each	\$_1,000						0
20n	Utility Poles Database Development	Each	\$_1,000						0
200	Fire Hydrant Database Development	Each	\$_1,000						0
20p	Medians Database Development	Each	\$_1,000_						0
209	Valves Database Development	Each	\$_1,000						0
20 r	Manhole Covers Database Development	Each	\$_1,000_						0
20 s	Trees Database Development	Each	\$_1,000_						0
20 t	Catch Basins/ Drainage Inlets from Master Drainage Plan Database Development	Each	\$_1,000_						0
20u	Sidewalk Database Development	Each	\$_1,000_						0
20v	Curb \& Gutter Database Development	Each	\$_1,000_						0
Service Category \#3: Pavement Management Analysis									
				Provide Price	Per Tiered Group		A	в	$\mathrm{C}=\mathrm{AxB}$
Activity \#	Activity Description	Unit	Unit Base Cost (\$)	Unit Cost (\$) 0-200 Lane Miles	Unit Cost (\$) 201-700 Lane Miles	Unit Cost (\$) 700+ Lane Miles	Total Units	Agreed Upon Cost (\$)/Unit	$\begin{aligned} & \text { Total Agreed Upon } \\ & \text { Cost (\$) } \end{aligned}$
21	Calculate the International Roughness Index (IRI)for each road segment in accordance with ASTM E1926. Provide results compatible with the Participant's GIS database, if applicable.	Lane Mile ${ }^{1}$		\$_6.5-_	\$_6.5-	\$_6.5_-			0
22	Calculate a Pavement Condition Index (PCI) score for each road segment using an approved pavement management system and in accordance with ASTM D6433 or ASTM E3303. Provide results compatible with the Participant's GIS database, if applicable.	Lane Mile ${ }^{1}$		\$ ${ }^{19.6}$	\$ __ ${ }^{19.6}$	\$__ 19.6			0
23	With input from Participant's staff, devise a weighing system taking into account PCI, IRI, average daily traffic for thoroughfares (traffic count raw data provided by Particicant), public safety emergency routes, and apply this $0-100$ numeric index to the roadway information collected for the entire jurisdiction. Provide results compatible with the Participant's GIS database, if applicable. Cost includes base cost plus lane mile unit cost.	Lane Mile ${ }^{1}$	\$__6, 600 _	\$_13-	\$_13 _	\$_13__			0
24	Estimate the annual budget required to meet the long-term goals regarding desired pavement condition levels. Cost includes base cost plus lane mile unit cost.	Each Participant		\$ ${ }^{13}$ -	\$_- ${ }^{13}$ -	\$ - ${ }^{13}$ -			0
25	Create a five year and ten year pavement rehabilitation plan with input from Participant's staff. Cost includes base cost plus lane mile unit cost.	Each Participant	\$_ 7 7,800	\$ - ${ }^{13}$ -	\$ - ${ }^{13}$ -	\$ - ${ }^{13}$ -			0
26	Recommend the computer hardware and software needed for successful implementation, potentially including recommendations for licenses of pavement management system software and other geodatabase software as needed.	Each Participant	\$_4,450						0
27	Train Participant staff and provide assistance to the Public Works and IT Department as needed for the use of data collected through the fully automated system. (20 person maximum per class)	Day	\$_4,450						0
Service Category \#4: Electronic Products									
			Provide Price Per Tiered Group				A	в	$\mathrm{C}=\mathrm{AxB}$
Activity \#	Activity Description	Unit	Unit Base Cost (\$)	Unit Cost (\$) 0-200 Lane Mile	Unit Cost (\$) 201-700 Lane Miles	Unit Cost (\$) 700+ Lane Miles	Total Units	Agreed Upon Cost (\$)/Unit	$\begin{aligned} & \text { Total Agreed Upon } \\ & \text { Cost (\$) } \end{aligned}$
28	Roadway information that shall be collected and provided to the Participant at a minimum includes items a. through i. in Exhibit B	Lane Mile ${ }^{1}$		\$_26 _	\$_26 _	\$_26			0
29	Collect digital images at 25 -foot intervals of the road surface condition and link to a geodatabase (minimum forward facing imagery).	Lane Mile ${ }^{1}$		\$-13 ${ }^{13}$	\$- ${ }^{13}$	\$-13 ${ }^{13}$			0
30	Load assessment data for all Participant-maintained pavements into a pavement management system required by local government Participant(s), if applicable. (Example: MicroPaver). The assessment data shall include visual observations, photographs and measurements collected by instrumentation. Cost includes base cost plus lane mile unit cost.	Each Participant	\$__ 6,500	\$__ 6.5_	\$___6.5_	\$___ 6.5			0
31	Implement map module so that pavement condition and other data can be integrated, displayed, and accessed through the map interface in a format consistent with the Participant's horizontal and vertical control network system, if applicable. Cost includes base cost plus lane mile unit cost.	Each Participant	\$___6,500	\$___ 6.5	\$__ 6.5	\$___ 6.5			0
32	Provide to the Participant the pavement condition data in a pavement management system database approved by Participant. Coordinate with the Participant's IT department to provide pavement condition data in a format compatible with the Participant's Environmental Systems Research Institute (ESRI) GIS database, if applicable. Cost includes base cost plus lane mile unit cost.	Each Participant	\$___6,500	\$___ 6.5	\$__ 6.5	\$___ 6.5			0
33	Provide asset management tools or systems (not just collection) (i.e., 15 -year plan about how to fix or repair assets). Cost includes base cost plus lane mile unit cost.	Each Participant	\$__6, 6,50	\$__ 6.5	\$__ 6.5	\$__ 6.5			0
							A	B	$\mathrm{C}=\mathrm{AxB}$
Activity \#	Activity Description	Unit	Unit Base Cost (\$)	Unit Cost (\$) 0-200 Lane Miles	Unit Cost (\$) 201-700 Lane Miles	Unit Cost (\$) 700+ Lane Miles	Total Units	Agreed Upon Cost (\$)/Unit	$\begin{gathered} \text { Total Agreed Upon } \\ \text { Cost (\$) } \end{gathered}$
34	Collect and analyze pavement structural condition information through the use of a falling weight deflectometer in accordance with industry standards on designated participant-owned roadways.	**							0
35	Collect and analyze pavement structural condition information through the use of Ground Penetrating Radar (GPR) in accordance with industry standards on designated participant-owned roadways.	**							0
36	Collect and analyze pavement structural condition information through the use of pavement cores in accordance with industry standards on designated participant-owned roadways (traffic control included) ${ }^{2}$	**							0
Service Category \#6: GIS Related Services									
			Provide Price Per Tiered Group				A	в	$\mathrm{C=A} \mathrm{\times B}$
Activity \#	Activity Description	Unit	Unit Base Cost (\$)	Unit Cost (\$) 0-200 Lane Miles	Unit Cost (\$) 201-700 Lane Miles	Unit Cost (\$) 700+ Lane Miles	Total Units	Agreed Upon Cost (\$)/Unit	$\begin{aligned} & \text { Total Agreed Upon } \\ & \text { Cost (\$) } \end{aligned}$
37	GIS Clean-Up Services	Each Participant	\$(no bid item)_						0

38	GIS Support Services	Each Patricipant	\$(no bid item)_						0
39	GIS Remote Training Sessions from IMS GIS Manager/ Expert (2-Hour Sessions)	Each Participant	\$(no bid item)_						0
Service Category \#7: Value Added Services									
			Provide Price Per Tiered Group				A	в	$\mathrm{C}=\mathrm{AxB}$
Activity \#	Activity Description	Unit	Unit Base Cost (\$)	Unit Cost (\$) 0-200 ane Mile	Unit Cost (\$) 201-700 Lane Miles	Unit Cost (\$) 700+ Lane Miles	Total Units	Agreed Upon Cost (\$)/Unit	$\begin{gathered} \text { Total Agreed Upon } \\ \text { Cost (\$) } \end{gathered}$
${ }^{40}$	Full Written Final Report- Firm shall prepare and submit a written project report summarizing the work performed, dates of collection, methodology, and results.	Each Participant	\$_10,000						0
41	Project Presentation- Firm shall prepare and present a written project report summarizing the work performed, dates of collection, methodology, and results to the Participant's legislative body.	Each Participant	\$-4,000-						0
42	Provide Curb Ramp and ADA/Barrier Free Ramp Compliance Survey	Each Participant	(no bid tiem)***						0
${ }^{43}$	Stand-alone field operation for collection of asset inventory only, with different levels of position accuracy and abilities to use data for attribute registration and conditions. Cost includes base cost plus lane mile unit cost. a.Photogrammetry b.Mobile Lidar	Lane Mile ${ }^{1}$	\$_15,000_	\$_150__	\$_150_	s_150__			0
44	Generic asset types, allowing for any item within line of sight of the collection vehicle. Asset types include items a. through d. in Exhibit B. Cost includes base cost plus lane mile unit cost.	Lane Mile ${ }^{1}$	\$ 10,000	\$_-95_-	\$_95-	\$_-95_-			0
45	Provide consultancy services to develop linework in GIS for missing sidewalks in order to quantify and identify on a map	Hour	S_-165__						0
						TOTAL			0

${ }^{1}$ Lane mile is to be defined as a mile traveled as

1. A single pass on alleyways
2. Includes the outside lane in each direction for collectors and arterials (2 total).
${ }^{2}$ Spacing for pavement cores to be negotiated with each participant.
${ }^{* *}$ The awarded Contractor(s) shall provide all necessary field inspectors, vehicles, tools, equipment, traffic control and other services required to perform this work. No engineering services are available under this contact. Any activities that Participant and/or Contractor deem to require the service(s) of an engineer must be procured separately and are the sole responsibility of that party."
${ }^{* * *}$ Fugro typically bids Activity \#42 per unit of "ramp" (at $\$ 80 / \mathrm{ramp}$) and not per "participant" as the quantity will be unknown.
